Set up the vector matrix, A. Example: Find the volume of the parallelepiped determined by the vectors [2, 3, -1], [-4, 5, 0], [1, -2, 4].
[2 | -4 | 1
3 | 5 | -2
-1 | 0 | 4]
Transpose matrix A to find A^T. The rows of A become the columns of A^T.
[2 | 3 | -1
-4 | 5 | 0
1 | -2 | 4]
Multiply A^T and A together using rules for matrix multiplication. Row 1 in A^T multiples to column 1 in A with each multiply step being summed to find the new 1,1 value. 2(2)+3(-4)+(-1)(1) = 4-12-1 = -9. Row 1 in A^T multiples to column 2 in A with each multiply step being summed to find the new 1,2 value. 2(-4)+3(5)+(-1)(0) = -8+15+0 = 7. The process continues until all 9 values are found in the multiplication matrix.
[2(2)+3(3)+(-1)(-1) | 2(-4)+3(5)+(-1)(0) | 2(1)+3(-2)+(-1)(4)
-4(2)+5(3)+0(-1) | (-4)(-4)+5(5)+0(0) | (-4)(1)+5(-2)+0(4)
1(2)+(-2)(3)+4(-1) | 1(-4)+(-2)(5)+4(0) | 1(1)+(-2)(-2)+4(4)]
[14 | 7 | -8
7 | 41 | -14
-8 | -14 | 21]
Calculate the value of the determinant for the product matrix, A^T*A.
14(41)(21)+7(-14)(-8)+(-8)(7)(-14)-[(-8)(41)(-8)+14(-14)(-14)+7(7)(21)]
12054+784+784-[22624+2744+1029]
13622-6397
7225
Calculate the square root of the result to find the volume. The volume of the example is the square root of 7225. The volume result is 85 cubic units.
Set up the vector matrix, A. Example: Find the volume of the parallelepiped determined by the vectors [2, 3, -1], [-4, 5, 0], [1, -2, 4].
[2 | -4 | 1
3 | 5 | -2
-1 | 0 | 4]
Calculate the determinant of A.
2(5)(4)+(-4)(-2)(-1)+1(3)(0)-[1(5)(-1)+2(-2)(0)+(-4)(3)(4)]
40-8+0-[-5+0-48]
32-(-53)
85
Find the absolute value of the result. The absolute value of 85 is 85.
The volume of the parallelepiped is 85 cubic units.