a−x2=0(b−x)
ab−ax−x2b+x2=0
ab−x2b−ax+x2=0
x2(1−b)+x(b−a)=ab
x2(b−1)−x(b−a)=−ab
Now we can use the quadratic formula to find the solutions for x:
x=(−b±√(b−a)2+4ab(1−b))2(1−b)
Simplifying the expression under the square root:
x=(−b±√(b−a)2+4ab−4ab2))2(1−b)
x=(−b±√(b2−2ab+a2+4ab−4ab2))2(1−b)
x=(−b±√(a2−2ab+b2))2(1−b)
x=(−b±√(a−b)2)2(1−b)
x=[−b±(a−b)]2(1−b)
x=−b±(a−b)2(1−b)
Therefore, the solutions for x are:
x1=[−b+(a−b)]2(1−b)
x2=[−b−(a−b)]2(1−b)