How to Derive Double Argument Properties of Hyperbolic Functions

Hyperbolic trigonometry is the field of mathematics that respects the hyperbolic sine, cosine and tangent functions. Physicists use the hyperbolic functions to make calculations in special relativity, electromagnetism and gravity.

Instructions

  1. Derive the Double Argument Formula for Sinh(x)

    • 1

      Take the definition of the hyperbolic sine, and replace all the x's with (2x) to get: sinh(2x) = -i sin(2ix).

    • 2

      Replace a with ix in the double angle formula of the sine function to get: sin(2ix)=2sin(ix)cos(ix). Substitute the right-hand term in the original equation to get: Sinh(2x)=-i*sin(ix)cos(ix)=2*(-i)*sin(ix)cos(ix).

    • 3

      Change the sines and cosines back into hyperbolic sines and cosines. Since cos(ix)=cosh(x) and -isin(ix)=sinh(x), you will arrive at the double argument formula: sinh(2x)=2sinh(x)cosh(x).

    Derive the Double Argument Formula for Cosh(x)

    • 4

      Double the arguments in the definition of the hyperbolic cosine: cosh(2x) =cos (2ix).

    • 5

      Use the double-angle identity for cosines to switch out cos(2ix): cos(2a) = 1 – 2sin²(a). So: cos(2ix)=1 – 2sin²(ix). Replace that into the original equation to get: cosh(2x)=1-2sin²(ix).

    • 6

      Switch out sin(ix) for-sinh(x)/i , using the definition of the hyperbolic sine: cosh(2x)=1-2*(-sinh(x)/i)².

    • 7

      Multiply the i's in the denominators and simplify to get the double argument formula:
      cosh(2x)=1-2*(-sinh(x)/i)²=1+sinh²(x)

    Derive the Double Argument Formula for the Hyperbolic Tangent

    • 8

      Double the arguments in the definition of the hyperbolic tangent: tanh(2x)=sinh(2x)/cosh(2x).

    • 9

      Swap in the double argument formulas for hyperbolic sine and cosine (which you just derived):
      tanh(2x)=2sinh(x)cosh(x)/(1+sinh²(x))

    • 10

      Use the identity 1=cosh²(a)-sinh²(a) and substitute it into the denominator. Simplify to get: tanh(2x)= 2sinh(x)cosh(x)/(cosh²(x)+sinh²(x)).

    • 11

      Divide the numerator and denominator each by cosh²(x). Simplify the equation with the definition of the hyperbolic tangent and you will get the double argument formula:
      tanh(2x)=2tanh(x)/(1+tanh²(x)).

Learnify Hub © www.0685.com All Rights Reserved